3x^2+215x+308=0

Simple and best practice solution for 3x^2+215x+308=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+215x+308=0 equation:


Simplifying
3x2 + 215x + 308 = 0

Reorder the terms:
308 + 215x + 3x2 = 0

Solving
308 + 215x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
102.6666667 + 71.66666667x + x2 = 0

Move the constant term to the right:

Add '-102.6666667' to each side of the equation.
102.6666667 + 71.66666667x + -102.6666667 + x2 = 0 + -102.6666667

Reorder the terms:
102.6666667 + -102.6666667 + 71.66666667x + x2 = 0 + -102.6666667

Combine like terms: 102.6666667 + -102.6666667 = 0.0000000
0.0000000 + 71.66666667x + x2 = 0 + -102.6666667
71.66666667x + x2 = 0 + -102.6666667

Combine like terms: 0 + -102.6666667 = -102.6666667
71.66666667x + x2 = -102.6666667

The x term is 71.66666667x.  Take half its coefficient (35.83333334).
Square it (1284.027778) and add it to both sides.

Add '1284.027778' to each side of the equation.
71.66666667x + 1284.027778 + x2 = -102.6666667 + 1284.027778

Reorder the terms:
1284.027778 + 71.66666667x + x2 = -102.6666667 + 1284.027778

Combine like terms: -102.6666667 + 1284.027778 = 1181.3611113
1284.027778 + 71.66666667x + x2 = 1181.3611113

Factor a perfect square on the left side:
(x + 35.83333334)(x + 35.83333334) = 1181.3611113

Calculate the square root of the right side: 34.370934106

Break this problem into two subproblems by setting 
(x + 35.83333334) equal to 34.370934106 and -34.370934106.

Subproblem 1

x + 35.83333334 = 34.370934106 Simplifying x + 35.83333334 = 34.370934106 Reorder the terms: 35.83333334 + x = 34.370934106 Solving 35.83333334 + x = 34.370934106 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-35.83333334' to each side of the equation. 35.83333334 + -35.83333334 + x = 34.370934106 + -35.83333334 Combine like terms: 35.83333334 + -35.83333334 = 0.00000000 0.00000000 + x = 34.370934106 + -35.83333334 x = 34.370934106 + -35.83333334 Combine like terms: 34.370934106 + -35.83333334 = -1.462399234 x = -1.462399234 Simplifying x = -1.462399234

Subproblem 2

x + 35.83333334 = -34.370934106 Simplifying x + 35.83333334 = -34.370934106 Reorder the terms: 35.83333334 + x = -34.370934106 Solving 35.83333334 + x = -34.370934106 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-35.83333334' to each side of the equation. 35.83333334 + -35.83333334 + x = -34.370934106 + -35.83333334 Combine like terms: 35.83333334 + -35.83333334 = 0.00000000 0.00000000 + x = -34.370934106 + -35.83333334 x = -34.370934106 + -35.83333334 Combine like terms: -34.370934106 + -35.83333334 = -70.204267446 x = -70.204267446 Simplifying x = -70.204267446

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.462399234, -70.204267446}

See similar equations:

| -66= | | 6x^2+215x+308=0 | | 11x-3(x-5)=5310 | | 3/4-4/8 | | 3x^2+14x+60=0 | | 3x^2+16x+60=0 | | 2x^2-2.5x-6=0 | | 3x^2+25x+60=0 | | 10x-5(x-2)=1865 | | -3x^2+1=0 | | 4x^2+25x+60=0 | | 9/14-11/18 | | (8c^9)1/3 | | x^2+11x-45=0 | | 4x^2+30x+60=0 | | 3x^2+30x+60=0 | | 5/6+1/10 | | 3x^2+30x+40=0 | | 7x-4x-3=24 | | 4x^2+30x+40=0 | | (6/x)+(8/x+5)=3 | | 4x^2+30x+75=0 | | 4x^2+25x+75=0 | | 3x^2+25x+75=0 | | 4(7x+3)=236 | | 6x^2+25x+75=0 | | 2x^2+25x+75=0 | | 1/5-1/7 | | 5(8-6x)=-140 | | 5x^2+20x+75=0 | | 0*x=1/2 | | 5x^2+25x+75=0 |

Equations solver categories